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In many classification or regression problems, there may be a lot of irrelevant features. Bayesian
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При решении многих задач классификации или регрессии зачастую приходится стал-
киваться с большим количеством нерелевантных признаков. Одним из известных способов
решения задачи отбора признаков является метод, основанный на Байесовском подходе
к выбору модели. Этот метод получил широкое распространение, однако область его при-
менения была ограничена. В данной работе этот метод применяется для более широкого
класса моделей и исследуется на примере задачи бинарной классификации с бинарны-
ми признаками. Также предложена новая модель для бинарной классификации данных
и метод обучения этой модели, позволяющий автоматически убирать нерелевантные при-
знаки.
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1 Introduction

Feature selection is an important challenge that arises in most machine learning problems.
There are different approaches to this task. One of them is to use predictive models that can
automatically choose the most relevant features during the training procedure. For example, it
can be done with LASSO (Least Absolute Shrinkage and Selection Operator) regression or other
models that use L1-regularization to ensure sparsity. Bayesian ARD [1]) is another approach to
developing such models. As an example, consider the Relevance Vector Machine (RVM), [2]. In
case of regression, the RVM is a linear model with an ARD prior; x is an object; t is its target;
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w is a vector of model parameters or weights; and ϕ(x) is a vector of generalized features. The
model definition is shown below:

w = (w1, . . . , wM)T ∈ R
M ; ϕ(x) = (ϕ1(x), . . . , ϕM(x))T ∈ R

M , t ∈ R;

y(x) = wTϕ(x); (1)

p(t |x,w, β) = N (t | y(x), β−1); (2)

p(w |α) =

M
∏

i=1

N (wi | 0, α
−1
i ) (3)

and the following expression is the marginal likelihood function, also known as evidence [3]:

p(t |X,α, β) =

∫

p(t |X,w, β)p(w |α) dw .

Equation (2) defines the likelihood function for an object x. Here, β is the noise preci-
sion, β = σ−2, and y(x) is the mean of the target function given by a linear model defined
in (1). Expression (3) describes the prior over the weight parameters w (ARD prior). When
the evidence of the model is maximized with respect to hyperparameters α, some of them go
to infinity. The corresponding weight parameters will then have posterior distributions that are
concentrated at zero; so, the corresponding basis functions ϕi(x) are pruned out of the model.
This effect is known as ARD effect and is explained and discussed in [1,2] and [4, p. 349–353].

However, this effect is usually studied on models with Gaussian prior. The present authors
propose to extend this approach and use another family of distributions. In this paper, a binary
classification problem with binary features is considered as an example. A new probabilistic
model has been developed for this task and beta prior distribution has been used to reproduce
ARD effect.

2 Model of Relevance Tagging Machine

2.1 Probabilistic model

Consider a binary classification problem of objects that have binary features (tags).
Let (xi, ti)

n
i=1 be the training set, where xi is the object described by a binary vector, xi =

= (xi1, . . . , xid)
T, d denotes the number of tags, and ti ∈ {0, 1} is the class label. In this

notation, xij = 1 if object xi has tag j and xij = 0 otherwise.
Under the assumption that all tags affect the class label independently, we define the prob-

abilistic model of relevance tagging machine (RTM):

P(t = 1 | xj = 1) = qj ;

P(t = 1 |x, q) =
d
∏

j=1

q
xj

j ×

(

d
∏

j=1

q
xj

j +
d
∏

j=1

(1− qj)
xj

)−1

where q = (q1, . . . , qd)
T are the model parameters, which are responsible for the tags’ influence

on the class label.

2.2 Bayesian Automatic Relevance Determination approach

Similarly to the RVM, follow a traditional Bayesian ARD approach to feature selection. The
basic idea is to treat parameters q as random variables and place independent priors over them.
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As the domain of qj is [0, 1], it is natural to use beta distribution over qj . Also, as both classes
are meant to be of the same importance, symmetrical distribution is used:

qj ∼ Beta(αj + 1, αj + 1), αj ∈ [0,+∞).

Here, αj = 0 corresponds to the uniform distribution over qj , so that there is no regularization
of qj . Contrary, if αj tends to plus infinity, the variance of qj tends to zero and that implies qj =
= 0.5. It means that the jth tag is removed from the model:

P(t |x, q = (q1, . . . , qj−1, qj = 0.5, qj+1, . . . , qd)
T)

= P(t |x, q = (q1, . . . , qj−1, qj+1, . . . , qd)
T) = P(t |x, q\j).

Note that the case αj ∈ (−1, 0) is not considered because in this case, maximum a posteriori
(MAP) estimate of q would be more contrast (i.e. closer to 0 or 1) than maximum likelihood
(ML) estimate. In case of the problem under investigation, it is unreasonable to believe that a
tag is actually more relevant than it seems to be.

The posterior is written using Bayes’ theorem:

P(q |X, t,α) =
P(t |X, q)p(q |α)

∫

P(t |X, q)p(q |α)dq
. (4)

2.3 Evidence maximization

The denominator in Eq. (4) is called the evidence [3] of the model. In general, a simple model
has higher evidence than the complex one if they have the same prediction accuracy [4, p. 349–
352]. In the presented case, evidence maximization is expected to set αj = +∞ for the majority
of irrelevant features:

E(α) =

∫

P(t |X, q)p(q |α) dq → max
α

.

However, in the described model, likelihood and prior are not the conjugate distributions;
so, the evidence is intractable. It also cannot be efficiently estimated numerically, because
numerical computation of multidimensional integrals is a very difficult and time-consuming
task. Therefore, one needs some kind of approximation in order to maximize the evidence. In
this paper, an approach that uses variational lower bounds for optimization is described.

3 Variational lower bounds for evidence maximization

Definition 1. A variational lower bound on a function f(w), w ∈ M ⊆ R
n, is a func-

tion g(w, ξ), w ∈M, ξ ∈M , with the following properties:

g(w,w) = f(w) ∀w ∈M ;

g(w, ξ) 6 f(w) ∀w ∈M, ∀ξ ∈ M,

ξ is called a variational parameter.

Consider an optimization problem f(w) → max
w

. If g(w, ξ) is a variational lower bound

on f(w), then this optimization problem can be solved in such coordinatewise optimization
procedure:

wk+1 = argmax
w

g(w, ξk); ξk+1 = wk+1.



D. A. Molchanov, D. A. Kondrashkin, D. P. Vetrov 1880

This optimization procedure is known as bound optimization algorithm or bound optimizer.
Many popular optimization methods in machine learning and pattern recognition are the spe-
cial cases of this algorithm. For instance, EM (expectation–maximization) algorithm and its
extensions, generalized iterative scaling algorithm for maximum entropy models, nonnegative
matrix factorization algorithm, and concave-convex procedure are the common examples of
bound optimizers [5].

In general case, this lower bound may not be exact for any point w and variational param-
eters may be from a different space. In that case, the result of a similar optimization procedure

ξk+1 = argmax
ξ

g(wk, ξ); wk+1 = argmax
w

g(w, ξk+1) (5)

can be treated as an approximate solution of the original optimization task.
This approach is widely used in various optimization problems. The best feature of it is

that there is no need to compute the original function f(w). For example, a similar approach
is used in [6] where it is applied to Bayesian logistic regression.

In case of RTM, this approach is applied to evidence maximization. A variational lower
bound has been obtained on the evidence integrand and its integral has been used as a set of
evidence lower bounds which can be used in an optimization procedure shown in (5).

Theorem 1. Function Ẽ(α,H) is a lower bound on RTM evidence for all H ∈ (0, 1)n×d,
α ∈ [0,+∞)d :

E(α) > Ẽ(α,H) =

∫ n
∏

i=1

Li(q,ηi)

d
∏

j=1

p(qj |αj) dq =

=

(

n
∏

i=1

ci(ηi)

)

d
∏

j=1

∫

exp

(

∑

i:j∈Qi

c̃ij(ηi)

(

1− qj

qj

)|Qi|(2ti−1)
)

p(qj |αj) dqj

∀H ∈ (0, 1)n×d, ∀α ∈ [0,+∞)d,

where

Qi = {j|xij = 1};

ci(ηi) =

∏

j∈Qi

ηtiij(1− ηij)
1−ti

∏

j∈Qi

ηij +
∏

j∈Qi

(1− ηij)
exp







∏

j∈Qi

η1−ti
ij (1− ηij)

ti

∏

j∈Qi

ηij +
∏

j∈Qi

(1− ηij)






;

c̃ij(ηi) = −

∏

j∈Qi

ηtiij(1− ηij)
1−ti

∏

j∈Qi

ηij +
∏

j∈Qi

(1− ηij)

(

ηij

1− ηij

)|Qi|(2ti−1)

|Qi|
−1;

and H is the matrix of variational parameters and its ith row is equal to ηT
i .

The proof of Theorem 1 is provided in Appendix A.
The shapes of the evidence integrand and its lower bounds are shown in Figs. 1 and 2. Note

that although the evidence lower bound can be computed as a product of d one-dimensional
integrals, these integrals still have to be computed numerically. Also, note that although the
number of variational parameters is nd, usually most of them are inessential and do not affect
the value of this lower bound. A variational parameter ηij is essential if and only if xij = 1.
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Figure 1 Evidence integrand variational lower bounds for a single object for different values of vari-
ational parameters η: (a) t = 0, x = (1, 0, 1)T and q1 = 0.8; and (b) t = 0, x = (0, 1, 1)T and
q2 = 0.2
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Figure 2 Evidence integrand lower bounds for the whole dataset

Therefore, there are only nτ essential variational parameters where τ is the average number of
tags per object.

The evidence lower bound is optimized in an EM-like algorithm:

1) E-step: Hnew = argmax
H

log Ẽ(αold,H); and

2) M-step: αnew = argmax
α

log Ẽ(α,Hnew).

These two steps are repeated until convergence.

On E-step, hyperparameters α are fixed and variational parameters H are tuned to obtain
the most accurate lower bound. On M-step, the best lower bound from the E-step is optimized
with respect to hyperparameters α. The L-BFGS-B method [8] was used to handle optimization
problems on both steps of algorithm. This method is called RTM-EM.

Let kE and kM be the number of iterations of L-BFGS-B on E-step and M-step, respec-
tively. The complexity of one iteration is then equal to O(nτkE + dkM) operations of numerical
integration.

Complexity of RTM-EM is too high; so, a simplification is suggested. In RTM-EM, on E-step
of EM algorithm, an attempt to obtain the best possible value of variational parameters was
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Table 1 Relevance determination performance on synthetic data

Noise RTM-MAP-EM RTM-EM RVM L1-LR

Percentage of removed irrelevant tags

Random 99.64% 99.46% 99.10% 85.63%
Correlated 84.44% 88.90% 84.65% 100.00%

Percentage of removed genuine tags

Random 4.50% 4.68% 2.63% 3.54%
Correlated 2.50% 4.34% 1.04% 2.50%

made. Instead of that, a variational lower bound on the evidence integrand was used that is
exact at its point of maximum. E-step will then look like this:

ηnew
i = qMAP = argmax

q

P(t |X, q)p(q |αold) ∀i.

Note that all objects share the same set of variational parameters; so, there are only d of
them: ηi = ηk for all i, k = 1, . . . , n. This method was named RTM-MAP-EM. Its complexity
is O(dkM) operations of numerical integration.

It was experimentally shown that RTM-MAP-EM also purges irrelevant (both noisy and
correlated) tags and has comparable accuracy with RTM-EM algorithm. Also, both EM-based
methods remove the majority of irrelevant tags on early steps. It means that only several
steps of EM-algorithm are needed for feature selection. Further optimization will just tune the
remaining hyperparameters.

The complete algorithm of RTM-MAP-EM is provided in Appendix B.

4 Experiments

4.1 Synthetic data

The ability of the presented methods to remove irrelevant features on a synthetic dataset was
studied and compared to two classic feature selection models — RVM, where a similar idea is
applied to linear regression, and L1-regularized logistic regression. There were 500 objects and
50 features. The data consisted of genuine tags that were used to generate the class label, and
two types of irrelevant tags: random tags and tags that were correlated to some of the genuine
tags. Relevance determination accuracy is shown in Table 1.

Both EM-based methods successfully remove nearly all random features and most correlated
features. The RTM-MAP-EM, RTM-EM, and RVM give comparable results and detect random
features better than L1-regularized logistic regression (L1–LR). However, L1–LR provided the
best results in removing correlated tags.

4.2 Sentiment analysis

Also, the methods were tested on a real task: sentiment analysis problem [9]. In this problem,
objects are sentences and the task is to classify them into positive and negative ones. A bag of
words representation was used (each tag represents a word; xij = 1 if object xi contains the jth
word from the dictionary). There were 1000 train objects, 411 test objects, and 1869 features.
There were 11 tags per objects in average. Test set classification accuracy is shown in Table 2.
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Table 2 Prediction performance on sentiment analysis dataset

Method Prediction accuracy

RTM-MAP-EM 0.9659
RVM 0.9586
L1-LR 0.9708
RF 0.9416

GBDT 0.9683
SVM 0.9683

The present method (RTM-MAP-EM) was compared to different state-of-the-art classifiers
like the RVM, L1-LR, Random Forest (RF), gradient boosting over decision stumps (GBDT),
and SVM.The present method provides prediction accuracy that is comparable to classical methods.
It also provides a way to sort features with respect to their importance: RTM-MAP-EM chose
about 70 tags to be relevant and removed everything else; L1-LR chose about 120 tags; and the
RVM chose about 230 tags. A histogram of weights of most relevant words for these methods
is shown in Figs. 3–5.
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Figure 3 qj − 0.5 for most relevant tags according to RTM-MAP-EM
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Figure 4 Weights of linear model tuned by L1-LR
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Figure 5 Weights of linear model tuned by RVM

The RVM chose a lot of rare words to represent the negative class (words “crappy,” “shitty,”
“lousy,” “blame,” “afraid,” “piece,” and “idiot” have less than seven occurrences in the dataset)
and the words from the positive class does not look relevant at all. The RVM failed to solve
the relevance determination problem on this dataset.

The words chosen by RTM-MAP-EM and logistic regression are quite intuitive in case of
this problem. the present model, it isn’t true. Most of them are very emotional. Top-20 words
chosen by logistic regression are almost the same as top-20 words, chosen by the present method.
However, the present model provided a more sparse solution with comparable prediction per-
formance. Therefore, the present method proved to be better at relevance determination than
logistic regression and the RVM on this dataset.

5 Concluding Remarks

Most of previous work on Bayesian ARD approach consider only Gaussian prior. The authors
demonstrate that other appropriate priors may also work well. It means that Bayesian ARD
approach might be more broad than it was considered before and is not limited to the usage of
Gaussian prior. Also, a method to solve a binary classification problem with binary features is
suggested and an experimental comparison which shows that the present model is comparable to
the state-of-the-art methods of classification and feature selection is provided. The experiments
show that the present model provides better feature selection results than the classic feature
selection models like RVM and L1-LR.
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Appendix A

Proof of Theorem 1

Derive a variational lower bound on the likelihood function for a single object x. Let Q be the set of
its tags: Q = {j|xj = 1}. After some transformations and a change of variables, a convex function is
obtained and its tangent is used as its variational lower bound:

P(t |x, q) =

∏

j∈Q
qtj(1− qj)

1−t

∏

j∈Q
qj +

∏

j∈Q
(1− qj)

=



1 +
∏

j∈Q

(

1− qj

qj

)2t−1




−1

as t ∈ {0, 1};

sj :=

(

1− qj

qj

)|Q|(2t−1)

;

so,

logP(t |x, q) = − log






1 +





∏

j∈Q

sj





1/|Q|





. (6)

As sj > 0, the geometric mean

(

∏

j∈Q
sj

)1/|Q|

is concave with respect to s [7, p. 74]. As f(x) =

= − log x is convex and nonincreasing, the whole expression on the right part of (6) is convex with
respect to s [7, p. 84]. Therefore, its tangent is its variational lower bound and after making inverse
change of variables and taking the exponent, one obtains a variational lower bound on P(t |x, q).

The variational lower bound on the likelihood of an object xi from the training set looks as follows:

P(ti |xi, q) > Li(q,ηi) = ci(ηi) exp





∑

j∈Qi

c̃ij(ηi)

(

1− qj

qj

)|Qi|(2ti−1)




where

Qi = {j|xij = 1};

ci(ηi) =

∏

j∈Qi

η
ti
ij(1− ηij)

1−ti

∏

j∈Qi

ηij +
∏

j∈Qi

(1− ηij)
exp







∏

j∈Qi

η
1−ti
ij (1− ηij)

ti

∏

j∈Qi

ηij +
∏

j∈Qi

(1− ηij)






;

c̃ij(ηi) = −

∏

j∈Qi

ηtiij(1− ηij)
1−ti

∏

j∈Qi

ηij +
∏

j∈Qi

(1− ηij)

(

ηij

1− ηij

)|Qi|(2ti−1)

|Qi|
−1.

The following equation concludes the proof:

E(α) =

∫

P(t |X, q)p(q |α) dq >

∫ n
∏

i=1

Li(q,ηi)

n
∏

j=1

p(qj |α) dq = Ẽ(α,H) .

Note that each object has its own set of variational parameters. As ηij is dummy if qj 6∈ Qi, there

are
∑

i,j xij essential variational parameters.
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Appendix B

RTM-MAP-EM algorithm

Algorithm 1 RTM-MAP-EM

Require: training set (X, t); maximum number of iterations T ; tolerance ε

Ensure: tuned vector of hyperparameters α
1: α0 ← (1, . . . , 1)T // Initial value of hyperparameters
2: η0 ← argmax

q

∑n
i=1 logP(ti |xi, q) + logP(q |α0) // η = qMAP

3: for k = 0 to T

4: // E-step:
5: ηk ← argmax

q

∑n
i=1 logP(ti |xi, q) + logP(q |αk−1) // η = qMAP

6: Hk ← (ηk, . . . ,ηk)T

7: // M-step:
8: αk ← argmax

α

log Ẽ(α,Hk)

9: if ‖αk −αk−1‖2 < ε then

10: break

11: α← αk

12: return α

Some notes about implementation:

– qj and ηij are bound to [0.1, 0.9] for all i, j. Otherwise, computations tend to be unstable;

– kE = kM = 10 in all experiments;

– αj is bound to [0, 1000] for all j. If αj > 900, it is considered to be infinite: αj := +∞; and

– there seems to be no need to wait till full convergence; for RTM-MAP-EM, T = 20 was enough
in both experiments.
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